Note

Structure of the O24 antigen of *Escherichia coli*, a neuraminic acid-containing polysaccharide

Grigorij Kogan ¹, Barbara Jann and Klaus Jann Max-Planck-Institut für Immunbiologie, D-7800 Freiburg-Zähringen (Germany) (Received February 10th, 1992; accepted May 27th, 1992)

The O-specificity of cell wall lipopolysaccharides (LPS) is due to their polysaccharide moiety¹. Whereas the O-specific polysaccharides are neutral in most genera, such as *Klebsiella* or *Salmonella*, they are negatively charged in a number of *Escherichia coli* strains^{1,2}. Mostly, the negative charge in these O-specific polysaccharides is due to hexuronic acids or phosphate. Whereas structural analogues of *N*-acetylneuraminic acid (Neu5Ac) were reported to be the acidic constituents of LPS from *Proteus mirabilis* strains³, Neu5Ac was known to be a constituent of capsular polysaccharides in several bacterial genera but only rarely in LPS. We have recently analysed the structures of the O104 and O56 polysaccharides of *E. coli* which both contain Neu5Ac within the polysaccharide chain^{4,5}. Herein we report on the O24 polysaccharide, which also contains Neu5Ac and has a structure very similar to that of the O56 polysaccharide⁵.

E. coli E41a (O24:K:H⁻, Freiburg collection number 21735) was extracted with aqueous 45% phenol and the material obtained from the aqueous phase was subjected to ultracentrifugation⁶. The sediment contained an LPS fraction (LPS I) which consisted of short-chain LPS and R-LPS. The supernatant solution contained a LPS (LPS II) which was isolated by fractional precipitation with cetyltrimethylammonium bromide^{4,5,7}. LPS II had a long O-specific polysaccharide chain, as shown by SDS-PAGE⁸ (data not shown). It was used for further structural studies. GLC and the thiobarbituric acid assay⁹ revealed that the O24-specific LPS II consisted of p-glucose (Glc), 2-acetamido-2-deoxy-p-glucose (GalNAc), and a thiobarbituric acid-reactive nonulosonic acid, which was identified as N-acetylneuraminic acid (Neu5Ac), in the molar ratios 2:1:1. For the identification of Neu5Ac, the polysaccharide was hydrolysed, and the liberated neuraminic acid was re-N-acetylated with acetic anhydride-sodium hydrogen car-

Correspondence to: Professor Dr. Klaus Jann, Max-Planck-Institut für Immunbiologie, Stübeweg, 51, D-7800 Freiburg-Zähringen, Germany.

On leave from the Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Czechoslovakia.

TABLE I			
Methylation analysis ^a of non-sialic acid sugar trisaccharide derived by Smith degradation (TS)	•	O24 polysaccharide (P	S) and the

Methylation product	Sugar residue	PS	TS
1,5-Di-OAc-2,3,4,6-tetra-OMe-hexitol	Glc(1 →	1	
1,2,3,5-Tetra-OAc-4,6-di-OMe-hexitol	→ 3)Glc(1 → 2 ↑	1	
1,3,5-Tri-OAc-4,6-di-OMe-2-deoxy-2-N-	•		
methylacetamidohexitol	→ 3)GalNAc(1 →	1	
1,3,5-Tri-OAc-2,4,6-tri-OMe-hexitol 1,5-Di-OAc-3,4,6-tri-OMe-2-deoxy-2- <i>N</i> -	→ 3)Glc(1 →		1
methylacetamidohexitol	GalNAc(1 →		1

^a Values are molar ratios.

bonate and treated with Neu5Ac aldolase-lactic acid dehydrogenase-NADH¹⁰. The amount of Neu5Ac so determined corresponded well with the value from the thiobarbituric acid reaction⁹.

Methylation analysis of the polysaccharide^{11,12} (Table I) showed that GalNAc was 3-linked, one Glc residue was terminal and nonreducing, and the other was 2,3-branched. The substitution pattern of Neu5Ac was obtained by methylation followed by formation of the methyl glycoside methyl ester derivative¹³. The mass spectrum, obtained with GLC-MS, was identical with that of N-acetyl-7-O-acetyl-N-methyl-4,8,9-tri-O-methylneuraminic acid methyl ester methyl glycoside recently obtained from the O56 polysaccharide⁵. It indicated that, as in the O56 polysaccharide, Neu5Ac was 7-linked in the O24 polysaccharide.

Periodate oxidation of the O24 polysaccharide, followed by borohydride reduction, destroyed the terminal nonreducing glucose and converted Neu5Ac into its C_8 analogue, as described in ref. 5.

Smith degradation¹⁴ of the O24 polysaccharide resulted in a trisaccharide consisting of a terminal nonreducing GalNAc, a 3-linked glucose, and a 7-linked C_8 analogue of Neu5Ac at the reducing terminus. The structure of the last component was shown by NMR spectroscopy (see below).

The 13 C NMR spectrum of the O24 polysaccharide (Fig. 1) contained signals of four anomeric carbon atoms at δ 104.4, 102.7, 102.0, and 96.4. A gated decoupling experiment 15,16 showed that the signals at δ 104 and 102.7 were due to β -anomeric carbon atoms and that at δ 96.4 was due to an α -anomeric carbon atom. The signal at δ 102.0 was negative in an APT experiment 17,18 , indicative of α -C-2 of Neu5Ac. In a gated decoupling experiment 15,16 , the signal at δ 173.6 (C-1 of Neu5Ac) showed a coupling constant $J_{C-1,H-3ax}$ of 5.4 Hz, indicating the α -anomeric configuration of Neu5Ac 19,20 . The signals at δ 54.4 and 52.9 correspond to the nitrogen-substituted C-5 of Neu5Ac and C-2 of GalNAc, respectively, the signal at δ 37.6 was due to the C-3 of Neu5Ac, and those at δ 23.3 were due to the methyl-C of the two N-acetyl groups. In the 13 C NMR spectrum of the trisaccharide, derived

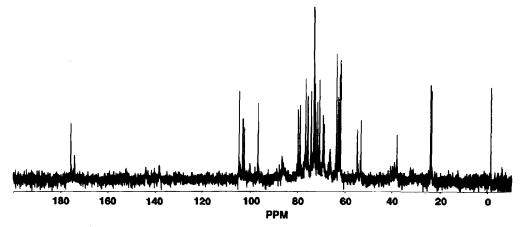


Fig. 1. 75-MHz ¹³C NMR spectrum of the O24 polysaccharide, recorded in D₂O (70°C) with acetone (δ 31.45) as internal standard.

from the O24 polysaccharide by Smith degradation, the C-1 signal of the α -anomeric sugar residue (δ 96.4) was missing. Since the terminal nonreducing glucose was destroyed during Smith degradation, this indicated that the terminal Glc p was α -linked and the 2,3-disubstitued Glc p as well as the 3-linked GalNAc were β -linked. The signal due to C-2 of Neu5Ac, which was at δ 102.0 in the spectrum of the O24 polysaccharide, was at δ 96.8 in the spectrum of the trisaccharide. This indicated that the α -linked Neu5Ac was converted into the β anomer of its C₈ analogue at the reducing end of the trisaccharide¹⁹.

The ¹H NMR spectrum of the O24 polysaccharide contained, inter alia, signals at δ 5.39 ($J_{\text{H-1,H-2}}$ < 1 Hz), 4.67 ($J_{\text{H-1,H-2}}$ 7.5 Hz), and 4.55 ($J_{\text{H-1,H-2}}$ 8.1 Hz) corresponding to the anomeric protons of one α -linked and two β -linked sugar residues. The signal at δ 2.53 was due to the H-3eq of Neu5Ac. Its chemical shift value was intermediate of those for the α and β anomers (δ 2.80 and 2.40, respectively)²¹, as was the distance between the signals due to H-3ax and H-3eq²² in the α and β anomers.

The data presented here are in agreement with the following formulation of the O24 polysaccharide.

→ 3)-
$$\beta$$
-D-Gal p NAc-(1 → 3)- β -D-Glc p -(1 → 7)- α -Neu5Ac-(2 → 2 ↑ 1 α -D-Glc p

Although the α -anomeric form of Neu5Ac cannot be doubted, the chemical shift values of its H-eq and C-3 signals are unusually high. This may be due to a close spatial apposition of the H-3 protons of Neu5Ac to the N-acetyl group of GalNAc. This phenomenon, which also occurred with the O56 polysaccharide⁵, is under further study.

The structure of the O56-specific polysaccharide of $E.\ coli^5$ is remarkably similar to the structure described here. In the main chain of the O56 polysaccharide, 3-linked GlcNAc is present instead of 3-linked β -D-GalNAc and the 3-linked β -D-Glc is substituted at C-2 with α -D-Gal instead of α -D-Glc. The similarity between these two O-antigenic polysaccharides is borne out by serological cross-reactivity between $E.\ coli$ O56 and O24. Inspection of the respective structures indicates that the cross-reacting epitope(s) must contain the common substructure \rightarrow 3)- β -D-Glc p-(1 \rightarrow 7)- α -Neu5Ac-(2 \rightarrow .

ACKNOWLEDGMENTS

The technical assistance of Mrs. Sigrun Jäger is gratefully acknowledged. We thank Mrs. Helga Kochanowski for running the NMR spectra, and Mr. Dietmar Borowiak for running the mass spectra.

REFERENCES

- 1 I. Ørskov, F. Ørskov, B. Jann, and K. Jann, Bacteriol. Rev., 41 (1977) 667-710.
- 2 K. Jann and B. Jann, in E.T. Rietschel (Ed.), Handbook of Endotoxin, Vol. 1, Elsevier, Amsterdam, 1984, pp 138-186.
- 3 Y.A. Knirel and N.K. Kochetkov, FEMS Microbiol. Rev., 46 (1987) 381-385.
- 4 G. Kogan, B. Jann, and K. Jann, FEMS Microbiol. Lett., 91 (1992) 135-140.
- 5 G. Kogan, A.S. Shashkov, B. Jann, and K. Jann, Carbohydr. Res., 238 (1992) 261-270.
- 6 O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-91.
- 7 W.F. Vann and K. Jann, Infect. Immun., 25 (1979) 85-92.
- 8 C.M. Tsai and C.E. Frasch, Anal. Biochem., 119 (1982) 115-119.
- 9 L. Warren, J. Biol. Chem., 234 (1959) 1971-1975.
- 10 P. Brunetti, A. Swanson, and S. Roseman, Methods Enzymol., 6 (1963) 465-473.
- 11 S. Hakomori, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 12 K.R. Phillips and B.A. Frazer, Carbohydr. Res., 90 (1981) 381-411.
- 13 B. Fournet, G. Strecker, Y. Leroy, and J. Montreuil, Anal. Biochem., 116 (1981) 489-502.
- 14 I.J. Goldstein, G.W. Hay, B.A. Lewis, and F. Smith, Methods Carbohydr. Chem., 5 (1965) 361-370.
- 15 R. Freeman and G.A. Morris, J. Magn. Reson., 1 (1979) 5-26.
- 16 B. Tiffon and J.P. Doucet, Can. J. Chem., 54 (1970) 2045-2058.
- 17 S.L. Patt, J. Magn. Reson., 45 (1981) 535-639.
- 18 D. Brown, T.T. Nakashima, and D.L. Rabenstein, J. Magn. Reson., 45 (1981) 302-314.
- 19 J.F.G. Vliegenthart, L. Dorland, H. van Halbeek, and J. Haverkamp, in R. Schauer (Ed.), Sialic Acids, Chemistry, Metabolism, and Function, Springer Verlag, Wien, 1982, pp 127-173.
- 20 S. Prytulla, J. Lauterwein, M. Klessinger, and J. Thiem, Carbohydr. Res., 215 (1991) 345-349.
- 21 U. Dabrowski, H. Friebolin, R. Brossmer, and M. Supp, Tetrahedron Lett., 48 (1979) 4637-4640.
- 22 Y.A. Knirel, N.A. Kocharova, A.S. Shashkov, B.A. Dmitriev, N.K. Kochetrov, E.S. Stanislavsky, and G.M. Mashilova, Eur. J. Biochem., 163 (1987) 639-652.